Free Quantitative Fourth Moment Theorems on Wigner Space
نویسندگان
چکیده
منابع مشابه
Wigner Chaos and the Fourth Moment
We prove that a normalized sequence of multiple Wigner integrals (in a fixed order of free Wigner chaos) converges in law to the standard semicircular distribution if and only if the corresponding sequence of fourth moments converges to 2, the fourth moment of the semicircular law. This extends to the free probabilistic setting some recent results by Nualart and Peccati on characterizations of ...
متن کاملAffine Wigner Moment Invariants
Moments of a Wigner distribution are defined based on both the space and spatial frequency coordinates and are considered as a summarization of the distribution. A method is proposed in this paper to derive functions called affine Wigner moment invariants (AWMI) based on these moments. These functions remain unchanged when the underlying images are affine transformed. As Wigner distributions co...
متن کاملConvergence of the fourth moment and infinite divisibility: quantitative estimates
We give an estimate for the Kolmogorov distance between an infinitely divisible distribution (with mean zero and variance one) and the standard Gaussian distribution in terms of the difference between the fourth moment and 3. In a similar fashion we give an estimate for the Kolmogorov distance between a freely infinitely divisible distribution and the Semicircle distribution in terms of the dif...
متن کاملQuantitative stable limit theorems on the Wiener space
We use Malliavin operators in order to prove quantitative stable limit theorems on the Wiener space, where the target distribution is given by a possibly multidimensional mixture of Gaussian distributions. Our findings refine and generalize previous works by Nourdin and Nualart [J. Theoret. Probab. 23 (2010) 39–64] and Harnett and Nualart [Stochastic Process. Appl. 122 (2012) 3460–3505], and pr...
متن کاملThe optimal fourth moment theorem
We compute the exact rates of convergence in total variation associated with the ‘fourth moment theorem’ by Nualart and Peccati (2005), stating that a sequence of random variables living in a fixed Wiener chaos verifies a central limit theorem (CLT) if and only if the sequence of the corresponding fourth cumulants converges to zero. We also provide an explicit illustration based on the Breuer-M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2017
ISSN: 1687-0247,1073-7928
DOI: 10.1093/imrn/rnx036